Приглашаем посетить сайт

Достоевский (dostoevskiy-lit.ru)

Философская энциклопедия (в 5 томах, 1960-1970)
ПАРАДОКС

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ПАРАДОКС

ПАРАДОКС (от греч. παράδοξος - неожиданный, странный) - рассуждение, доказывающее как истинность, так и ложность некоторого предложения (или, что то же, доказывающее как это предложение, так и его отрицание). Ввиду некоторой расплывчатости или относительности значения термина "доказательство" (а значит и "доказывать", "доказывающее" и т.п.), понятие П. также оказывается расплывчатым и не всегда обозначает "абсолютное" противоречие в наиболее строгом значении этого слова, т.е. противоречие, в получении к-рого не используются никакие исходные допущения. Если такие допущения используются, то вывод противоречия доказывает лишь несовместимость (см. Совместимость) этих допущений, что само по себе не является П. Анализ любого рассуждения показывает, что оно опирается на нек-рые (явные или скрытые) допущения. Уже то обстоятельство, что слова, используемые при изложении рассуждения, что-то означают, равно как и то, что лицо, воспринимающее рассуждение, в конце этого рассуждения правильно помнит его начало, оба эти обстоятельства, как и нек-рые другие, зависят от нек-рых допущений. Поэтому в принципе всегда есть возможность избавиться от любого П. - для этого достаточно проанализировать рассуждение, выявить используемые в нем допущения и отказаться от любого из них.

П. как абсолютное противоречие легко может возникнуть в теории, если логические основы этой теории недостаточно изучены и выявлены не полностью. Отрицат. роль П. состоит в том, что он обнаруживает несостоятельность той теории, в к-рой он получен, т.е. попросту то, что совокупность ее исходных допущений должна быть отвергнута. Кроме того, логич. правила чаще всего позволяют вывести из противоречия любое предложение теории или, по крайней мере, отрицание любого предложения, что обесценивает само понятие доказуемости в теории. Поэтому в связи с каждой теорией, представляющей логич. интерес, возникает задача - освобождение теории от П., т.е. придания ей такой формы, в к-рой они не могут возникнуть (доказательство этого факта представляет собой доказательство непротиворечивости теории), или, по крайней мере, такой формы, при к-рой практически не удается получить противоречие (ввиду трудности нахождения доказательств непротиворечивости часто довольствуются этим вторым видом решения задачи освобождения теории от П., хотя первый, конечно, предпочтительнее). Т.о., решение этой задачи, поставленной для произвольно выбранной теории, может включать в себя (и обычно включает) предварит. замену этой теории на другую, достаточно близкую к ней по своей цели или содержанию, но с более или менее отработанными логич. основами (ибо в своем первоначальном варианте любая сколько-нибудь сложная теория обычно далека от логич. совершенства и приближается к нему в значит. мере как раз благодаря попыткам устранения П.; в этом, кстати, состоит положит. значение П. в логич. развитии теории). Коль скоро исходные допущения теории (часто именуемые ее постулатами или аксиомами, хотя строгая теория и не обязательно должна строиться согласно методу аксиоматическому) в достаточной мере выявлены, от нек-рых из них приходится часто отказываться в целях избежания П. Ввиду того, что полный отказ от исходных допущений привел бы и к полному разрушению теории, отказ от нужных допущений обычно сопровождается принятием др. допущений, способных играть по возможности ту же полезную роль, к-рую играли бы в теории отбрасываемые допущения. Т.о., под влиянием обнаруживаемых П. наши теории уточняются. Уточняется и само понятие доказательства - так что рассуждения, приводившие к П. на ранней стадии развития теории, уже не приводят к ним на позднейших стадиях этого развития. Ввиду этого слово "П." часто употребляется условно или в переносном смысле.

Нек-рые Π. были известны уже в древности. Евбулиду приписывается П. "лжец", к-рый можно изложить след. образом: рассмотрим вопрос об истинности высказывания "я лгу". Если, сказав "я лгу", я сказал истину, то значит я при этом солгал (т.е. сказал неправду), что противоречиво, следовательно, произнося это высказывание, я сказал неправду, т.е. солгал. Итак, доказано, что, произнося это высказывание, я солгал, а так как именно это я и утверждал, произнося это высказывание, то я, тем самым, сказал при этом истину, т.е. доказано и то, что я (в том же случае) сказал истину. В этом противоречии и состоит П. Следует подчеркнуть, что он был получен без помощи принципа исключенного третьего. (Распространенный предрассудок, что этот принцип играет существ. роль в П. рассматриваемого вида, был связан лишь с выбором более удобной в просторечии формы их изложения. Первым на несущественность роли этого принципа в возникновении П. обратил внимание, по-видимому, Кёрри, в связи с парадоксом Рассела.) Анализ П. "лжец" показывает, что в нем используется допущение об осмысленности того, что предложение "я лгу" является истинным (без этого допущения рассматриваемый П. может представлять собой просто набор слов, хотя и составленный по нек-рым логич. правилам, но не имеющий смысла, а поэтому и значения доказательства противоречия). Др. П., также известный в античности, - П. "куча": одно зерно не может образовать кучи; если n зерен не могут образовать кучи, то не может образовать ее и и n+1 зерно. Следовательно, куча зерна невозможна. Вместе с эмпирич. допущением того, что куча зерна возможна, это рассуждение образует противоречие. Анализ этого П. показывает, что в нем используется математическая индукция от n к n+l, или точнее допущение о применимости ее в этом случае. Важнейшей для оснований математики проблемой является разработка свободной от противоречий теории, трактующей вопрос о границах законности математич. индукции. Исследования в этом направлении приводят к развиваемой автором так называемой ультраинтуиционистской программе обоснования математики (см. статью Le programme ultraintuitio-nniste des fondements des mathématiques, в сб.: Infinitistic methods, Warsz., 1961). (Следует заметить, что во многих вопросах естествознания - практически всюду, где встречается бесконечность, - возникает надобность в исследованиях этого рода. Напр., в разъяснении нек-рых П. космологии естественным представляется отказ от допущения о том, что идею бесконечности Вселенной следует связывать с традиц. матем. представлениями о натуральном ряде, в к-ром функции умножения и возведения в степень определены для любых чисел. Из этого допущения вытекает, что в натуральном ряде должно иметься любое "астрономическое" число, напр. 10100, но обосновать такое допущение для произвольного натурального ряда невозможно, а естеств. попытки "доказательства" терпят неудачу из-за порочного круга.)

Возможны, впрочем, и др. способы избавления от П. "куча", напр. путем отказа от допущения об осмысленности понятия "куча".

Традиц. математика идет именно по этому пути, не располагая, впрочем, доказательствами того, что аналогичные П. в ней не могут возникнуть. (Все видимые "доказательства" этого рода содержат порочный круг; о понятии последнего см. Круг в доказательстве.) Не менее известен древний П. об Ахиллесе и черепахе Зенона Элейского. Ахиллес, идя за черепахой в десять раз быстрее ее, никогда ее не догонит, поскольку к тому моменту, как он дойдет до места, на к-ром черепаха первоначально находилась, она уйдет вперед на 1/10 этого расстояния, а когда Ахиллес пройдет эту 1/10, черепаха уйдет вперед еще на 1/100 и т.д., так что к моменту, когда Ахиллес ее догнал бы, закончился бы бесконечный процесс, событиями к-рого служат прохождения Ахиллесом этих последоват. промежутков. И для этого П. известно много способов разъяснения, т.е. выявления используемых в нем посылок, от к-рых затем отказываются. Часто (как это предлагал еще Аристотель) отказываются от посылки о том, что физич. пространство делимо до бесконечности, подобно математическому. Такое решение задачи логически безукоризненно, но имеет тот недостаток, что несовместимо с приложениями математики к явлениям природы (для последних можно привести аналогичные формы этого П., "доказывающие" невозможность движения). Др. решение состоит, напр., в отказе от допущения о том, что молчаливо используемая Зеноном идея "совпадения" имеет смысл, к-рым можно пользоваться в этом П. Имеется в виду то, что в изложенном П. отождествляются и считаются совпадающими два процесса - физич. движение и возникновение в нашем сознании его последоват. частей. Полного тождества здесь, конечно, нет - мы ведь прекрасно умеем и различать эти вещи, так что в рассуждении Зенона участвуют отождествления умозрительно представляемых частей di физич. процесса с частями сi этого процесса, имеющими место в действительности. С учетом того, что отождествление происшедшего с непроисшедшим очевидным образом вызывает формальное противоречие и должно быть поэтому отвергнуто, при построении непротиворечивой теории указ. выше отождествления следует мыслить не иначе, как в форме процесса отождествлений, возникающих по мере возникновения отождествляемых объектов. Так как умозрительно представляемые части рассмотренного физич. процесса по условию его задания образуют бесконечный процесс, то и соответств. процесс отождествлений (предполагающих в каждом случае возникновение соответств. событий di) должен быть бесконечным. Между тем при попытке получить рассматриваемый П., отказываясь от допущения об осмысленности понятия "совпадение" и заменяя его разрешением считать "совпадающими" только ранее отождествленные объекты, противоречия не возникает, если, разумеется, не предположить указ. процесс отождествлений оконченным (что фактически вернуло бы понятию "совпадение" в этом П. его некритически воспринимаемое значение и привело бы к восстановлению П.; но при таком рассмотрении противоречивость исходных допущений очевидна с самого начала). Этот анализ указ. Зеноном П. приобретает фундаментальное значение в связи с упомянутой ультраинтуиционистской программой, проведение к-рой требует тщательного исследования проблемы отождест-в л е н и й.

В ультраинтуиционистских теориях приходится рассматривать кажущиеся противоречия, т.е. доказательства теорем вида Α&Α. в к-рых не участвуют отождествления А в обоих этих вхождениях. Присоединение такого отождествления повлекло бы за собой, по правилам этих теорий, появление "непреодолимого препятствия" к осуществлению нек-рого шага доказательства.

Можно считать, что все такие препятствия имеют вид з а ц е п л е н и й, т.е. состоят в следующем: пусть а0, а1,...,.... ai,... и b0, b1,..., bi,... - две последовательности, из к-рых путем чередования образуем смешанную последовательность a0, b0, а1, b1,..., ai, bi,... Тогда, если во второй последовательности имеется член bn, для к-рого в первой не будет соответствующего аn, то bn не появится в смешанной последовательности. Задача: "получить bn в смешанной последовательности" встречает препятствие в виде "зацепления" за первую последовательность а0, а1,..., ai,.... Следует заметить, что если имеются два вхождения конечной последовательности b0, b1.... bn, то для этой конечной последовательности возможно "структурное" отождествление в этих вхождениях, к-рое включает в себя отождествления для соответствующих членов bi обоих этих вхождений, а также "констатацию" того, что эти отождествления bi исчерпаны. Но если для одного из этих вхождений имеется задание: отождествить bi после его появления в смешанной последовательности с bi в его вхождении через b0, b1, ..., bn и первое вхождение b0, b1,..., bn рассматривается вместе с этим заданием, то в него этим заданием "вносится бесконечность", и это задание не может быть полностью выполнено из-за отсутствия последнего bi (где i≤n) в смешенной последовательности. "Структурное" отождествление b0, b1,.... bn оказывается невозможным, если для одного из вхождений b0, b1..., bn требуется, чтобы каждое bi из смешанной последовательности было отождествлено с bi в этом вхождении. Допущение о том, что такое отождествление выполнено, совершенно сходно с тем, к-рое было выше обнаружено при анализе П. об Ахиллесе и черепахе. Между тем в ультраинтуиционистских доказательствах могут рассматриваться натуральные ряды, один из к-рых длиннее другого, и тогда может встретиться ситуация вида той, к-рая сейчас была указана для a0, a1,..., ai,... и b0, b1,.... bn. "Структурное" отождествление того вида, невозможность к-рого сейчас была отмечена, может потребоваться для выполнения отождествления обоих А в A&A по правилам ультраинтуиционистских теорий. Поэтому в последних доказуемость как А, так и A не обязательно рассматривается как П. антиномии, в своей теории. Исторически это обстоятельство заставило обратиться к изучению аксиоматич. систем и к математической логике. В то же время развитие математич. логики и в особенности логич. семантики привело к необходимости выделения в особую группу т.н. семантич. П. Эти Π. характеризуются тем, что в них явно участвует осн. отношение семантики - отношение называния, или денотации, имеющее место между именем (предложением и т.п.) и тем, что оно обозначает. Так, в рассмотренном выше П. "лжец" участвует это отношение между предложением "я лгу" и его смыслом. Др. известный пример семантич. П. принадлежит Дж. Берри: имеется лишь конечное число сочетаний типографских знаков, напр., рус. языка, содержащих менее 1000 вхождений знаков. Каждое такое сочетание может служить определ. именем не более чем для одного натурального числа, а потому - ввиду бесконечности ряда натуральных чисел - должны иметься натуральные числа, не имеющие определ. имен этого вида, и среди них - наименьшее такое число. Сочетание знаков: "Наименьшее натуральное число, не имеющее определ. имени, составленного менее чем из 1000 вхождений типографских знаков русского языка", называет поэтому нек-рое определ. натуральное число и притом это название составлено менее чем из 1000 вхождений типографских знаков рус. языка, что противоречит определению этого числа. Имеется неск. решений этого П. Наиболее распространенное состоит в отказе от допущения об осмысленности понятия "число, имеющее определ. имя, составленное менее чем из 1000 вхождений типографских знаков рус. языка". Именно, поскольку все сочетания знаков этого рода не были рассмотрены, нет оснований считать, что каждое из них является или не является определ. именем нек-рого числа. Если же рассмотреть все такие сочетания, то можно определить нек-рое натуральное число, указанное при помощи фразы, взятой в кавычки выше в этом абзаце, но для того, чтобы это определение было полным, оно должно включать в себя рассмотрение всех упомянутых сочетаний и требовать для своего выражения более чем 1000 вхождений типографских знаков. Др. возможное решение П. состоит в отказе от допущения о том, что в классе натуральных чисел, не допускающих обозначений посредством менее 1000 типографских знаков, должно иметься (в случае непустоты этого класса) наименьшее число или, что то же, в отказе от индукции от n к n+1, применяемой по отношению к св-ву F: "иметь определ. имя, составленное менее чем из 1000 вхождений типографских знаков" (ибо только при помощи такой индукции выделяется наименьшее из чисел, не имеющих определ. имен рассматриваемого вида). Более тщательное рассмотрение этого вопроса показывает, что второе решение связано с первым. Парадокс Берри схож с тем, к-рый был указан в 1906 франц. математиком Ж. Ришаром. Часто парадоксами Ришара называют все семантич. П. рассмотренного вида. Их можно варьировать, но решение во всех случаях может состоять в отказе от допущения об осмысленности рассматриваемого отношения денотации.

Наиболее известный из П. теории множеств Кантора принадлежит Расселу: рассмотрим множество R всех множеств, не являющихся своими элементами. Тогда R является собств. элементом в том и только в том случае, если R не является собств. элементом. Поэтому допущение о том, что R является собств. элементом, приводит к противоречию - и R не является собств. элементом, а значит (в силу предыдущей фразы), R является собств. элементом. Следует отметить, что парадокс Рассела, как и семантич. П., не зависит от принципа исключенного третьего (хотя часто ему без надобности придают такую форму, в к-рой такая зависимость проявляется), и, значит, он (как и рассмотренные выше семантич. П.) сохраняет силу и для теории множеств, основанной на интуиционистской логике и даже минимальной логике. С др. стороны, представляет интерес, что в трехзначной логике Лукасевича эквивалентность предложения А его отрицанию не приводит к противоречию и парадокс Рассела, в его рассмотренной форме, снимается (что, однако, не является препятствием к получению разновидности этого П., обнаруженной Кёрри). Поэтому сов. логик Д. А. Бочвар предложил решение парадокса Рассела и подобных ему П., основанное на отказе от двузначной логики (см. Матем. сб., т. 4 (46), No 2, М., 1938, с. 287, 308; там же, т. 15 (57), No 3, М., 1944, с. 369- 384). Этим вопросом занимались в последние годы Сколем и Чан. Выяснилось, что в теории множеств, основанной на любой конечнозначной логике, появляются нек-рые разновидности парадокса Рассела, но в случае бесконечнозначной логики Лукасевича можно без противоречий рассматривать любые аксиомы о существовании множеств вида ∃y∀z(z∈y≡φ(z)) коль скоро φ(z) - формула теории множеств, не содержащая у и кванторов (Сколем, 1957). Чан (1963) показал также, что φ(z) при этом может и содержать кванторы, если аксиома, о к-рой идет речь, не содержит свободных переменных или удовлетворяет некоторым другим условиям.

Связь между парадоксом Рассела и семантич. П. нетрудно усмотреть в том, что понятие класса (множества) можно отождествить с понятием неопредел. имени элементов этого класса. Отношение принадлежности при этом сводится к отношению "значение определ. имени является одним из значений данного неопредел. имени". (Термин "определенное имя" имеет при этом лишь относит. значение, связанное с контекстом, т.к. однозначность значения имени зависит от способа отождествлений; обычно мы отвлекаемся от нек-рой возможной неопределенности, как несущественной для целей наших рассуждений; фиксирование значения неопредел. имени, или параметра, есть операция, очень часто явно зависящая от др. неопредел. имен, или параметров.) Теория множеств содержится, с этой т. зр., в теории имен, и все ее П. являются семантическими. Помимо парадокса Рассела, в теории множеств известно неск. др. П., связанных с нек-рыми теоремами этой теории. Кантор в 1895 открыл П., найденный вскоре (1897) итал. математиком Бурали-Форти. Этот П. состоит в противоречивости порядкового числа множества всех порядковых чисел. В 1899 Кантор нашел более простой П., носящий теперь его имя (этот П. был впервые опубликован только в 1932 и связан с рассмотрением мощностей множества всех множеств и множества всех подмножеств этого множества; имеется аналогичный П., связанный с противоречивостью мощности множества всех мощностей; см. С. К. Клини, Введение в метаматематику, М., 1957, с. 39-40).

Имеется неск. известных систем аксиом для теории множеств, в к-рых эти П. не возникают. Общая черта этих решений состоит в (частичном) отказе от допущения о том, что для всякого св-ва существует множество предметов, обладающих этим св-вом. Это допущение наз. п р и н ц и п о м (или постулатом) с в е р т ы в а н и я (см. также Принцип абстракции). Полный отказ от этого принципа во всех случаях означал бы на практике ликвидацию теории множеств, т.к. множества вводятся в рассмотрение именно посредством этого принципа. Поэтому в каждой аксиоматической теории множеств аксиомами свертывания считаются в этих теориях не всевозможные формулы, соответствующие принципу свертывания для каких-либо конкретных св-в, а только нек-рые из них. Одна из наиболее ранних аксиоматич. теорий множеств известна под названием типов теории и принадлежит Б. Расселу. Др. аксиоматич. системы для "классич." теории множеств сильнее теории типов, т.е. фактически они накладывают на принцип свертывания более слабые ограничения. Так, в системе Куайна логика имеет только один алфавит переменных, хотя и требуется, чтобы аксиомы свертывания получились из аксиом свертывания теории типов уничтожением индексов, указывающих типы переменных. В системе нем. математика Э. Цермело принцип свертывания распространяется лишь на такие св-ва предметов, из к-рых вытекает, что этот предмет принадлежит нек-рому произвольному множеству, и, кроме того, согласно этому принципу, допускается только образование пары любых двух множеств, объединения и множества всех подмножеств произвольного множества, а также постулируется осуществление нек-рого бесконечного множества; часто рассматривают также усиление системы Цермело, принадлежащее А. Френкелю (1890-1966), а именно, постулируется, что однозначный образ множества есть множество. Св-во "не принадлежать самому себе" не удовлетворяет этому ограничению, равно как и те св-ва, для к-рых соответствующие им по принципу свертывания множества участвуют в др. П. Вместо этой системы иногда рассматривают близкую к ней с двумя видами предметов - "множествами" (или "предметами" в собств. смысле) и "классами". Элементами "классов" могут служить только "множества" (или "предметы"). В таких случаях доказуемо существование класса всех множеств, а также класса всех множеств, не являющихся своими элементами, класса всех мощностей, или всех порядковых типов, - и известные Π. означают для этих систем лишь наличие теорем о том, что эти классы не являются множествами. Каждая из этих аксиоматич. систем сама по себе дает избавление лишь от известных П.; вопрос о ее непротиворечивости этим не решается, так как не исключено, что в любой из этих теорий можно отобразить какой-нибудь из еще неизвестных П. теории множеств. Вообще очень важная сама по себе проблема непротиворечивости должна была бы возникнуть. для теории множеств и в том случае, если бы не были открыты П. Известная вторая теорема Гёделя (см. Метатеория) показывает, что для решения этой проблемы необходим выход за пределы (соответствующей) теории множеств.

С аксиоматич. теорией множеств связан еще т.н. парадокс Сколема, состоящий в том, что аксиоматич. теория должна иметь (по теореме Левенхейма - Сколема) счетную модель и в такой модели для аксиоматич. теории множеств все множества должны быть счетны, в то время как в теории множеств имеется теорема о существовании несчетных множеств. Однако это положение кажется П. только до тех пор, пока понятие "счетности" не подвергается внимат. рассмотрению. Так как "счетность" означает "существование" функции нек-рого рода, то имеется решение парадокса Сколема, согласно к-рому функция, осуществляющая пересчет элементов несчетного множества, не является объектом модели. Это решение следует относить к любой теории, в к-рой рассматривается этот П., поэтому он фактически является не П., а только доказательством относительности понятия счетности.

П. теории множеств исчезли в аксиоматич. теориях, хотя непротиворечивость этих теорий до последнего времени оставалась недоказанной. Упомянутая выше ультраинтуиционистская программа обоснования математики предлагает доказательство непротиворечивости важнейших из них (системы Цермело - Френкеля и др., но не Куайна) и тем самым доказательство невозможности П. в этих теориях (см. ст. К обоснованию теории множеств, в сб.: Применение логики в науке и технике, М., 1961).

В логике иногда говорят о П. теории импликации. Но в этих случаях: нет П. в том смысле, в каком они рассматривались выше. Напр., неожиданность того, что импликацию A^(B^A) следует считать истинной, объясняется тем, что импликация F^G обладает непосредств. интуитивной ясностью лишь до тех пор, пока F и G не содержат импликаций. В модальной логике имеется следующий П. (=> всюду обозначает "необходимо"): 1. x=y⊃(=> x=x⊃ => x=y) (аксиома равенства); 2. => x=x⊃(x=у⊃ => x=y) (из 1 путем перестановки антецедентов); 3. x=у⊃ => x=y (из 2 и аксиомы => x=x по modus ponens). 3 противоречит тому, что равенство двух объектов может иметь место случайно. (Напр., если x и у - случайно совпавшие возраста двух собеседников, то в силу 3 имеется необходимость в том, чтобы их возраста совпадали, в то время как a priori эти возраста могут быть различными). В др. форме (где обозначает "возможно") этот П. производит еще более странное впечатление:

1. x=y⊃(x=x⊃x=y); 2. x= x⊃(x=y⊃x=y); 3. x=y⊃x=y (из 2, ибо x=x считается аксиомой, или теоремой); 4. x=y⊃x=y (из 3 путем контрапозиции). В силу 4 из возможности различия двух объектов вытекает их фактич. различие (чем исключается возможность их совпадения и потому из 4 следует, что совпадение, как и различие, объектов не может быть случайным). Наиболее простое решение этого П. состоит в отказе от допущения 1 (в обоих случаях). Между тем, это допущение имеет вид x=y⊃(F(x)⊃F(y) обычных аксиом равенства, от к-рых в обычных, т.е. немодальных, логиках не отказываются. Они получаются из таких аксиом для атомарных (не содержащих логич. операторов) формул путем выводов, выражающих св-ва монотонности логич. операций, и отказ от 1 означает поэтому отказ от этого св-ва для модальностей. Именно, в модальной логике не может быть (согласно предлагаемому решению П.) теорем вида (A⊃B)⊃(=> A⊃ => B) или (A⊃B) ⊃ (A⊃B) (т.к. с помощью аксиом этого вида можно получить формулу вида 1, использованную в П. - так, как это обычно делается при выводе общего случая формулы x=y⊃(F(X)⊃F(y)) из ее частных случаев для атомарных F(x)). Этот П. иногда называют П. "утренняя звезда" (из того, что эта "звезда" может оказаться Венерой, делается парадоксальный вывод о том, что она должна быть Венерой).

В этике встречается П., связанный с понятием свободы воли, если "свободным" считают такое поведение человека, при к-ром он делает все то, и только то, что хочет. При этом под "поведением" понимается класс всевозможных деяний (действий или бездействий), о к-рых только можно подумать, в частности хотений. Из такого понимания свободы вытекает, что свободное поведение невозможно, ибо, согласно этому пониманию, прежде чем совершить (в рамках свободного поведения) нек-рое деяние, надо этого "захотеть", а так как "захотеть" тоже есть деяние, то надо сперва "захотеть захотеть" совершить это деяние, и т.д. Этот результат противоречит тому, что свободное поведение человека возможно. Решение этого П. можно видеть как в отказе от использованного в нем допущения о невозможности бесконечной последовательности уходящих "вглубь" хотений, так и в отказе от допущения о том, что "свободное поведение" означает такое, при к-ром субъект делает только то, что он хочет. Логически возможны оба решения, но при первом совершается отказ от такого допущения, к-рое полностью соответствует нашей интуиции в рассмотренном вопросе. Кроме того, этот П. явно зависит от различия активного и пассивного залогов: он исчез бы, если бы в определении "свободного поведения" слова "он хочет" были заменены оборотом "ему хочется" (т.к. хотение в этом смысле нельзя отнести к поведению субъекта). Смешение активного и пассивного залогов легко приводит к П.

Вообще, для решения вопроса о том, какое из неск. решений П. следует предпочесть, приходится обращаться к категории цели или к рассмотрению нашего способа предпочитания одних вещей другим (т.е. того способа, к-рому мы следуем, в частности при выборе наших целей или желаний). Необходимо также помнить, что мн. слова имеют различные значения и в каждом конкретном случае только анализ смысловых связей позволяет отбросить те, к-рые являются посторонними. В повседневной речи мы часто игнорируем нек-рые связанные с этим требования точности, что может привести к П. Напр., признаются верными положения: каждый человек смертен (т.е. может умереть) и: каждый человек может умереть только один раз. Но слово "человек" может обозначать как живого, так и мертвого человека, что приводит к П.: признается верным то, что (человек) Наполеон умер. Следовательно, он не может умереть и потому он не смертен, что противоречит первому из приведенных ранее положений. Решение этого П. достигается уточнением смысла слова "человек" в первом из этих положений: каждый неумерший человек смертен. С т. зр. упомянутой ультраинтуиционистской программы, вопрос о прослеживании смысловых связей и о "посторонних" значениях слов должен быть включен в разработку вопросов оснований математики (см. Связь); он и все П., о к-рых сейчас шла речь, относятся к основаниям теории множеств.

Лит.: Френкель Α. Α., Бар-Xиллел И., Основания теории множеств, пер. с англ., М., 1966, гл. 1 (имеется подробная библ.).

А. С.

В начало энциклопедии