Приглашаем посетить сайт

История (history.niv.ru)

Философская энциклопедия (в 5 томах, 1960-1970)
МЕТАТЕОРИЯ

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

МЕТАТЕОРИЯ

МЕТАТЕОРИЯ (от греч. μετά - за, после) - теория, анализирующая структуру и методы к.-л. другой теории. Термин "М." имеет смысл и употребляется лишь по отношению к нек-рой данной, конкретной теории (М. логики, или металогика; М. математики, или метаматематик а, - теория математич. доказательств; М. отд. разделов физики; метахимия; метабиология и т.д.). Вообще, в принципе можно говорить о М. любой науч. дисциплины как дедуктивной, так и недедуктивной. Однако выполнение требований, предъявляемых к развитию любой М., связано с большими трудностями при построении М. для нематематич. наук или для наук нематематизируемых на данном этапе познания.

Каждая науч. теория изучает определ. фрагмент реального мира, а ее М. - систему понятий и положений данной теории. Задача М. - установить границы области применения изучаемой в ней теории, ответить (если это возможно на данном этапе развития науки) на вопросы о ее непротиворечивости и полноте, изучить (или установить) способы введения ее новых понятий и доказательства ее предложений и т.п. При этом различают с и н т а к с и ч е с к и й и с е м а н т и ч е с к и й аспекты М., посвященные соответственно изучению формальной структуры и интерпретациям рассматриваемой в ней теории (см. Синтаксис в логике, Семантика в логике).

Метатеоретич. исследование не только содействует более глубокому проникновению в основы теории, но и существенно влияет на развитие самой теории.

Критически изучая структуру к.-л. теории, М. позволяет изыскивать методы более рационального ее построения. Составляющие содержание М. м е т а т е о р е м ы, или теоремы о теоремах, позволяют упрощать механизм проведения логич. выводов в изучаемой теории; образцом может служить метаматематич. (металогич.) теорема о дедукции.

Непосредственная цель многих метатеоретич. исследований в различных областях науки - автоматизация отд. звеньев процесса логич. вывода (а в идеале - и всего этого процесса в целом), "автоматизация" в самом прямом, технич. значении этого термина. Встающие здесь трудности, особенно значительные для наук, не имеющих ясно выраженного дедуктивного характера, разрешаются на пути логич. анализа оснований данной науки и ее последующей формализации и аксиоматизации (см. Метод аксиоматический).

Фактически любая М. имеет дело не с содержательно понимаемой науч. теорией, а с точным понятием формальной системы (исчисления) [если предназначенная для исследования в М. теория с о д е р ж а т е л ь н а, то она предварительно подвергается формализации ]. Формальная система, являющаяся предметом исследования М., наз. ее п р е д м е т н о й теорией. Последняя представляет собой систему четко определенных символов и конструируемых из них предметов, с к-рыми оперируют по определ. правилам. В отличие от предметной теории (к-рая в дальнейшем изложении будет пониматься как формальная система), М. есть с о д е р ж а т е л ь н а я теория. Иногда метатеоретич. результаты в свою очередь формализуются и становятся предметом изучения м е т а м е т а т е о р и и и т.д. M. формулируется в метаязыке, тогда как изучаемая ею предметная теория находит свои средства выражения в т.н. я з ы к е - о б ъ е к т е.

Понятие предметной теории становится, т.о., экспликатом понятия научной теории. Выдвинувший впервые концепцию М. немецкий математик Д. Гильберт в своих ранних, относящихся к концу 90-х гг. 19 в., доказательствах непротиворечивости математич. теорий пользовался заданием нек-рой м о д е л и, т.е. такой системы формальных объектов, к-рая берется (вообще говоря) из др. теории и удовлетворяет аксиомам данной теории. В этом смысле предметная теория есть модель определ. части содержат. логики и математики (или, возможно, к.-л. др. дисциплины, основанной на логике), из к-рых она получается посредством формализации. В свою очередь, содержат. теория является и н т е р п р е т а ц и е й формальной системы. Это обстоятельство имеет первостепенное гносеологич. значение, обеспечивая приложимость логико-математич. результатов к той области действительности, к-рая отражается в данной науч. теории. Взаимоотношение между М. и предметной теорией отчетливо проявляется на примере требования непротиворечивости предметной теории, согласно к-рому в формальной системе должны быть доказуемы только истинные предложения, формализуемые в ее языке. Т.о., для постановки и обсуждения всех вопросов, касающихся непротиворечивости, исходным пунктом является естественное с гносеологич. т. зр. требование соответствия теории реальной действительности; теорию, в к-рой доказуемы в с е предложения, формулируемые на ее языке, есть все основания считать ложной.

Метаматематика. Необходимость создания М. возникла прежде всего в применении к математике; метаматематика является наиболее разработанной М. (Следуя идущей от Гильберта традиции, метаматематику, в отличие от металогики, часто понимают в более узком смысле, чем тот, к-рый следует из очерченной выше концепции метатеории; именно к метаматематике иногда причисляют лишь вопросы синтаксиса предметной математической теории, выделяя семантику в качестве самостоят. области исследования.) Развитие аксиоматич. метода в математике и открытие теоретико-множественных (логических) парадоксов разрушили привычные представления о "наглядной" очевидности как критерии истины в математике и "общепонятности" (общеубедительности) математич. рассуждений. Это вызвало необходимость в уяснении смысла (а следовательно, и точного определения) понятий доказательства, аксиомы, теоремы, потребовало исследования структуры математич. теорий (синтаксис) и вопроса об их истинности в к.-л. интерпретациях (семантика) и, наконец, проблемы их непротиворечивости (метаматематика).

Решение этих проблем было предложено в т.н. гильбертовской программе, согласно к-рой подлежащая изучению в М. научная теория подвергается формализации. Получающаяся в результате формальная система исследуется (на предмет выяснения ее непротиворечивости, полноты, разрешимости, независимости ее аксиом и др.) содержательными методами, не аппелирующими, однако, к смыслу ее объектов (формул) (см. Формализм). Такую содержат. теорию, изучающую структуру и свойства формальных систем, Гильберт и назвал метаматематикой.

Программа Гильберта допускала в М. лишь т.н. финитные методы, т.е. методы, в к-рых используются лишь конечные конструкции и выводы: наглядно представляемые предметы и эффективно осуществимые процессы (отсюда термин "финитизм" как название концепции Гильберта). Т.о., не допускается абстракция актуальной бесконечности (см. также Алгоритм) и требуется, чтобы доказательства существования любых объектов носили конструктивный характер; это значит, что должен быть указан, хотя бы неявно, метод построения рассматриваемого объекта. Иначе говоря, финитизм требует, чтобы математические предметы были указаны в явной форме, - или же должен быть дан способ их конструирования. Эти предметы должны быть "наглядны" (т.е. состоять из представляемых, различаемых и отождествляемых элементов). Строя свою теорию доказательства, Гильберт исходил из того, что содержащиеся в ней правила должны выражать "технику нашего мышления". "Основная идея моей теории доказательства сводится к описанию деятельности нашего разума, иначе говоря, это протокол о правилах, согласно которым фактически действует наше мышление" ("Основания геометрии", М.-Л., 1948, с. 382).

На пути, указанном Гильбертом, был получен ряд важных метаматематич. результатов. Ограниченность гильбертовского финитизма была вскрыта открытием Гёделя (1931), которое положило начало новому этапу в развитии метаматематики.

Гёдель ввел важный метод арифметизации М., в основе к-рого лежит однозначная нумерация объектов формальной системы (символов, термов, формул, доказательств и т.д.) нек-рыми натуральными числами. Эти числа наз. гёделевскими номерами этих объектов. Каждому формальному символу, входящему в алфавит системы, ставится в соответствие нек-рое число, а правилам образования формальных объектов - такая арифметич. операция, к-рая позволяет по числу - результату этой операции - однозначно восстановить способ образования из элементарных символов формального объекта (напр., формулы), имеющего номером это число. (Идея такой нумерации, по существу весьма естественная, напоминает принцип библиотечной или к.-л. др. классификации.)

Суть подхода Гёделя состоит в том, что арифметич. высказывания о числах, являющихся гёделевскими номерами нек-рых объектов предметной теории, могут быть интерпретированы как предложения о самих этих объектах. В результате этого метаматематич. предикаты (напр., "быть термом", "быть формулой", "быть доказательством" и т.д.) становятся представимыми при помощи арифметич. предикатов.

Рассмотрим метаматематический предикат ß(A(a),x,у), имеющий смысл: "у есть доказательство формулы, получающейся в результате подстановки цифры x (т.е. знака, обозначающего число х) в формулу А(а) вместо свободной переменной а". Заменим все объекты в этом предикате их гёделевскими номерами. Если формула А(а) получит номер р, а доказательство у номер b, возникнет арифметич. предикат (или предикат от натуральных чисел): Ρ(p, x, b). Этот предикат может быть представлен в арифметич. формальной системе, т.е. может быть написана арифметич. формула, выражающая этот предикат. Будем считать, что эта формула совпадает с обозначением нашего предиката Р. Рассмотрим теперь формулу ∀bP(p, p, b) (где вместо x подставлен гёделевский номер этой формулы). Получившаяся формула [назовем ее Аp(р) ] выражает следующее метаматематич. утверждение: "Для всякого натурального числа b неверно, что b есть гёделевский номер доказательства результата подстановки вместо переменной x в формулу с гёделевским номером p натурального числа p", т.е., иными словами, она выражает, что не существует доказательства этой формулы - выражает свою собственную недоказуемость. Если система непротиворечива (и, следовательно, все доказуемые в ней формулы истинны), то Аp(р) не может быть доказуемой, потому что тогда она была бы, в соответствии со своим собственным смыслом, ложной.

Но эта формула не только не доказуема, но и не опровержима. Для доказательства неопровержимости этой формулы методом Гёделя требуется более сильное условие, чем непротиворечивость системы (т. н. ω-непротиворечивость), но, как показал амер. математик и логик Дж. Б. Россер (1934), это несущественно. Несколько усложнив пример неразрешимой формулы [назовем эту новую формулу Aq(q) ], он доказал, что если арифметическая формальная система непротиворечива, то недоказуема как формула Aq(q), так и ее отрицание Aq(q); иначе говоря, если эта система непротиворечива, то она неполна, и Aq(q) является неразрешимой формулой. Это - первая теорема Гёделя в форме Россера.

Утверждение, что арифметич. формальная система непротиворечива, тоже может быть выражено нек-рой формулой этой системы. Выше говорилось, что система непротиворечива, если в ней есть недоказуемая формула. Возьмем в качестве такой формулы ложную формулу "1=0". Пусть эта формула имеет гёделевский номер r. Тогда ∀bP(r, r, b) выражает недоказуемость формулы "1=0", и, следовательно, непротиворечивость системы. Выше мы видели, что из того, что система непротиворечива, следует, что Аp(р) недоказуема. Если доказательство этого факта формализуется в формальной арифметич. системе с помощью гёделевской нумерации, то в этой системе должна быть доказуема следующая формула: ∀bP(r, r, b) ⊃ Ap(р) [по смыслу самой формулы Аp(р)! ]. Допустим, что ∀bP(r, r, b) доказуема, тогда, применив правило modus ponens, мы получаем Аp(р), что невозможно по предыдущей теореме Гёделя. Отсюда - следующая теорема: "Если арифметич. формальная система непротиворечива, то недоказуема формула ∀bP(r, r, b)"; иначе говоря, если указанная система непротиворечива, то невозможно построить доказательство ее непротиворечивости, проведенное средствами, формализуемыми в этой системе. Это - вторая теорема Гёделя о неполноте.

Результаты Гёделя (верные не только по отношению к арифметике, но и ко всякой системе, содержащей арифметику натуральных чисел как свою часть - такова, напр., аксиоматич. теория множеств) и полученные в последующие годы др. важные результаты, относящиеся к неразрешимости и неполноте формальных систем (так, в 1934 Чёрч, пользуясь методами, аналогичными гёделевым, доказал неразрешимость проблемы разрешения как для теорий, содержащих арифметику натуральных чисел, так и для исчисления предикатов), имели важнейшее филос. значение, т.к. обнаружили ограниченность метода формализации. Они убедительно показали, что понятия и принципы даже такой казалось бы "элементарной" области математики, как арифметика натуральных чисел, - не говоря уже о всей математике и о нематематических науках, пользующихся аппаратом математики, - "...не могут быть полностью выражены никакой формальной системой, как бы мощна она ни была" (Новиков П. С., Элементы математической логики, 1959, с. 36). Значение теорем Гёделя состоит еще и в том, что те рассуждения, к-рые выше были охарактеризованы как финитные, формализуются в арифметике с помощью гёделевской нумерации. Следовательно, такими финитными методами мы не только не можем доказать непротиворечивость всей классической математики, но даже и классической арифметики.

Теоремы Гёделя, указывая на предел возможностей финитизма, направили значит. часть последовавших за ними исследований по новому пути: не отказываясь от осн. идеи Гильберта исследовать средствами, представляющимися вполне допустимыми, проблемы, связанные с непротиворечивостью и др. свойствами формальных систем, искать новые, более сильные, но также достаточно убедительные, методы такого исследования (во всяком случае эти средства должны быть, согласно второй теореме Гёделя, сильнее арифметических). Такие конструктивные, - но уже не финитные в прежнем понимании - методы [напр. (математическая) индукция по т.н. конструктивным трансфинитным числам ], были успешно применены нем. математиком Г. Генценом (1936), П. С. Новиковым (1943), нем. математиками Аккерманом (1940) и К. Шютте (1951) для доказательства непротиворечивости классич. арифметики, причем для этих доказательств оказалось достаточным использование средств минимальной логики. Еще раньше Гёдель (1932-33) показал непротиворечивость классич. арифметики относительно интуиционистской арифметики (см. Интуиционизм); для т.н. ограниченной арифметики [без аксиомы (полной) математической индукции ] непротиворечивость была установлена П. С. Новиковым (1959) метаматематически. Др. подход, использующий т.н. ультраинтуиционистскую (не формализуемую в классич. логике, но удовлетворяющую системе весьма строгих критериев убедительности) концепцию в основаниях математики, был использован для доказательства (1960) непротиворечивости аксиоматич. теории множеств - проблемы, к-рая в рамках финитизма, согласно результатам Гёделя, не может быть решена.

Лит.: Гейтинг Α., Обзор исследований по основаниям математики, пер. с нем., М.-Л., 1936, гл. 2, 4; Гильберт Д., Основания геометрии, пер. с нем., М.-Л., 1948, доб. VI-X; Клини К. С., Введение в метаматематику, пер. с англ., М., 1957; Есенин-Вольпин А. С., Анализ потенциальной осуществимости, в сб. ст.: Логич. исследования, М., 1959; К обоснованию теории множеств, в кн.: Применение логики в науке и технике, [М., 1960 ]; Gödel К., Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I, "Monatsh. Math. Physik", 1931, Bd 38, S. 173-98; его же, Zur intuitionistischen Arithmetik und Zahlentheorie, "Ergebnisse eines mathematischen Kolloquims", Bd 4 (1931-32), W., 1933, S. 34-38; Gentzen G., Die Widerspruchsfreiheit der reinen Zahlentheorie, "Math. Ann.", 1936, Bd 112, H. 4; Сhurсh Α., An unsolvable problem of elementary number theory, "Amer. J. Math.", 1936, v. 58, p. 345-63; Rosser В., Extensions of some theorems of Gödel and Church, "J. Symbolic Logic", 1936, v. 1, No 3; Ackermann W., Zur Widerspruchsfreiheit der Zahlentheorie, "Math. Ann.", 1940, Bd 117, H. 2; Νovikоff P. S., On the consistency of certain logical calculus, Матем. сб., Новая серия, т. 12, 1943, вып. 2; Schütte К., Beweistheoretische Erfassung der unendlichen Induktion in der Zahientheorie, "Math. Ann.", 1951, Bd 122, H. 5; Tarski A., Mostowski Α., Robinson R. M., Undecidable theories, Amst., 1953. См. также лит. при ст. Металогика, Метаязык.

Ю. Гастев, И. Шмаин. Москва.

В начало энциклопедии