Приглашаем посетить сайт

Право (law.niv.ru)

Философская энциклопедия (в 5 томах, 1960-1970)
КЛАСС

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

КЛАСС

КЛАСС (от лат. classis - группа) - совокупность предметов (называемых э л е м е н т а м и класса), удовлетворяющих к.-л. условию или признаку. Примером К. может быть совокупность всех предметов, удовлетворяющих условию "быть положительным числом"; соответствующий этому условию К. состоит из всех объектов, каждый из к-рых имеет признак, указанный в этом условии (из всех положительных чисел). К. можно рассматривать как совокупность тех предметов, на к-рые распространяется нек-рое понятие (т. е. как объем понятия). Можно также понимать К. в том смысле, что всякая функция-высказывание, заданная нек-рой формулой Р(х) логики предикатов, содержащей лишь одну свободную переменную x (значениями к-рой являются объекты нек-рой предметной области), определяет нек-рый К.; этот К. состоит из предметов, каждый из к-рых удовлетворяет данной функции-высказыванию, т.е. отличается тем, что при замене переменной x в выражении Р(х) обозначением этого предмета выражение Р(х) обращается в истинное предложение. Вхождение в К. его элементов записывается обычно формулой a А (где А есть нек-рый К., а а - любой его элемент). Два К. считаются тождественными (совпадающими), если они имеют одни и те же элементы. С т. зр. "численности" своих элементов К. бывают конечными и бесконечными.

Примером конечного класса, т.е. К., состоящего из конечного числа элементов, может быть К. жителей г. Москвы в определ. момент времени. Примером бесконечного К. может быть упомянутый выше К. всех положительных чисел. Иногда численность элементов в К. является неопределенной; таков, напр., К. всех травоядных животных; этот К. содержит неопределенно большое число элементов, т.к. травоядные животные не только существовали в прошлом и существуют в наст. время, но и будут существовать в будущем. К., состоящий только из одного элемента, называется единичным, или сингулярным, К. В логике и математике рассматривается также т. н. пустой, или нулевой. К., т.е. К., не содержащий ни одного элемента. Пустой К. соответствует таким функциям, к-рые не удовлетворяются ни одним предметом данной области. Сингулярный К. и нулевой К. Аристотель не вводил при построении своей силлогистич. системы.

Над К. можно производить различ. операции: с л о ж е н и я (объединения) К., п е р е с е ч е н и я К. и др. Два К. наз. и с к л ю ч а ю щ и м и друг друга, если они не имеют общих элементов; понятия, объемами к-рых являются исключающие друг друга К., наз. внеположными. Отношению логического подчинения одного понятия другому соответствует отношение включения К. в К.; если класс А включен в класс В, то, значит, понятие, объемом к-рого является класс А, логически подчинено понятию, объемом к-рого является класс В.

Любые два класса A и B могут находиться между собой в одном из следующих отношений: (1) либо быть тождественными, (2) либо A будет частью (подклассом) класса B, причем в B будут также элементы, к-рых нет в A, (3) либо, наоборот, B будет подклассом A, причем в A окажутся элементы, к-рых нет в B, (4) либо A и B будут частично совпадать, т.е. у них будет нек-рая общая часть, но при этом в классе A будут элементы, к-рых нет в B, и в классе B будут элементы, к-рых нет в A, (5) либо, наконец, А и B будут исключать друг друга. Франц. ученый Ж. Д. Жергонн (1771-1859) построил аристотелеву силлогистику на основе этих отношений (т. н. пяти отношений Жергонна). Позднее (1955) Фэрис, выразив систему Жергонна в совр. аксиоматич. форме, показал, что она не совпадает с силлогич. системой Аристотеля в интерпретации Лукасевича. Подробнее о теории К. и ее логич. значении см. Логика классов.

С понятием К. (множества) связаны трудности, о к-рых см. Множество, Множеств теория, Парадокс, Типов теория.

Лит.: Горский Д. П., Некоторые вопросы объема понятия, в кн.: Вопр. логики. [Сб. ], М., 1955, с. 285-326; Тарский Α., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948, гл. 4; Чёрч Α., Введение в математическую логику, [т. ] 1, пер. с англ., М., 1960, § 04; Поварнин С. И., Логика, Пг., 1916, с. 29-36,41; Gergonne J.-D., Essai de dialectique rationelle,"Ann. de math, pures et appliquées", 1816-17, t. 7, p. 189-228; Faris Ι. Α., The Gergonne relations, "J. symb. logic", 1955, v. 20, No 3.

П. Попов. Москва.

В начало энциклопедии