Приглашаем посетить сайт

Лермонтов (lermontov-lit.ru)

Философская энциклопедия (в 5 томах, 1960-1970)
МНОЖЕСТВО

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

МНОЖЕСТВО

МНОЖЕСТВО - понятие математики и логики, выражающее обычно то же (или почти то же), что и понятие класса (в определ. форме различие между этими понятиями проводится иногда в связи со спец. проблематикой и терминологией теории М.). Поскольку, однако, в логич. основаниях математики обычно пользуются термином "М.", анализ глубоких трудностей, вызванных рассмотрением М. (конкретных или абстрактных) предметов (называемых э л е м е н т а м и М.), связан в методологии науч. исследования именно с применением термина "М.".

Введение в рассмотрение М. тех или иных предметов является одной из осн. познават. операций; при этом понятие М. становится отчетливым лишь в предположении, что элементы данного М. можно рассматривать как отд. предметы. Кроме того, обычно предполагается возможность сравнивать - различать и отождествлять - любые два элемента М.

Осн. принципом образования М. служит возможность рассматривать, в связи с каждым свойством, М. предметов, обладающих этим свойством. В соответствии с этим, в связи с каждым понятием можно рассматривать М. предметов, обладающих тем свойством, к-рое выражается этим понятием; соответствующее ему М. может состоять из любого (конечного) числа предметов; оно может также быть бесконечным; оно может быть и пустым, т.е. вовсе не содержать элементов - так, в частности, бывает тогда, когда рассматриваемое понятие логически п р о т и в о р е ч и в о (напр., М. всех круглых квадратов пусто, т. к. никакой квадрат не может быть круглым). М. может оказаться пустым и в том случае, когда соответствующее понятие непротиворечиво (т. е. когда мыслимы предметы, обладающие выражаемым им свойством); напр., до полета В. Николаевой-Терешковой в космос пустым было понятие "женщина-космонавт". Если понятие, в связи с к-рым образуется М., имеет в виду конкретный предмет, - таковы, напр., понятия, выражаемые собственными именами, - то М. состоит ровно из одного элемента. При этом М., состоящее из одного элемента, следует отличать от самого этого элемента. Напр., космонавт Валентина Николаева-Терешкова имеется только одна и поэтому М. всех космонавтов по имени Валентина Николаева-Терешкова состоит лишь из одного элемента и это М. следует отличать от самой Валентины Николаевой-Терешковой. Но и М., построенное в связи с общим (по крайней мере по форме) понятием, может состоять ровно из одного элемента; напр., М. всех женщин-космонавтов, известных на 4 июня 1963. В связи с рассмотрением М., состоящих лишь из одного элемента, могут возникать определенные трудности. Напр., М. центров тяжести Земли должно, согласно принципам механики и геометрии, состоять ровно из одной точки, однако благодаря непрерывным перемещениям тел на поверхности и в недрах Земли такая точка является лишь воображаемой реальностью.

Элементы М. могут быть отвлеченными объектами, в их обозначение могут входить неопредел. имена (т. е. языковые выражения в таком их употреблении, к-рое соответствует употреблению существительных с неопредел. артиклем в нем. и англ. языках), или т.н. п а р а м е т р ы. Так постоянно бывает, когда в рассмотрение вводятся множества точек, чисел и др. математич. объектов, к-рые при этом рассматриваются как неопределенные.

Понятие М. играет центр. роль в совр. классич. математике, т. к. к нему сводятся понятия действит. числа, функции, пространства и др. важнейшие понятия; оно крайне важно также и для л о г и к и. В т.н. чистой теории множеств рассматриваются М., элементами к-рых являются, в свою очередь, М. Это - характерная черта множеств теории. Основатель этой теории Кантор рассматривал понятие М. как результат двойной абстракции (отвлечения): от природы элементов М. и от порядка, в к-ром их естественно рассматривать. Первая из этих абстракций проводится последовательно лишь в отношении элементов, не являющихся М. Если элементами М. служат М., в теории множеств не отвлекаются от природы элементов. Часто рассматривают и упорядоченные М. (см. Порядка отношение), причем, с помощью понятия упорядоченной пары, их иногда сводят к М. в уже рассмотренном смысле, рассматривая такие, напр., М., как М. упорядоченных пар (обозначенных, напр., выражениями вида , где r и s - элементы данного упорядоченного М. и r предшествует s в рассматриваемом для этого М. порядке).

Конечные М. часто задаются перечнем их элементов (т. е. списком их названий). Это невозможно в случае бесконечных М., к-рые можно задать только указанием тех свойств, к-рыми обладают их элементы.

Рассматривая к.-л. область предметов (термин "область" является синонимом слова "М."), можно без колебаний ввести в рассмотрение любые M. элементов этой области, т.е. М. всех ее элементов, обладающих к.-л. свойством, - но это лишь в предположении, что сам факт образования этого М. не меняет ни первоначальной области, ни рассматриваемого свойства. Это, казалось бы, ясное требование приходится нарушать при попытках обоснования канторовской теории М. обычными средствами. Дело в том, что "свойства", рассматриваемые в этой теории, являются свойствами М., и в их формулировку постоянно входят выражения "для всех М.", "для нек-рых М." - и смысл этих выражений может измениться при построении нового, ранее не существовавшего М. Если М. вводится свойством этого рода, то говорят, что оно введено посредством н е п р е д и к а т и в н о г о о п р е д е л е н и я. Внимательное рассмотрение простейших построений классич. теории М. показывает, что эти построения либо просто основаны на таких допущениях, к-рые влекут за собой возможность этих построений (и в таком случае сами эти построения не могут служить для обоснования этих допущений, т. к. это значило бы круг в доказательстве), либо на непредикативных определениях, представляющих собой разновидность порочного круга в определениях. В использовании непредикативных определений можно видеть осн. причину возникновения парадоксов теории М. К таким парадоксам приводит, напр., рассмотрение М. всех M. (парадокс Кантора) или М. всех М., не являющихся своими собств. элементами (парадокс Рассела). Трудности, связанные с непредикативными определениями, являются одной из причин постановки острейших проблем логич. оснований теории М., поскольку важнейшие построения этой теории используют конструкции, обоснование к-рых включает непредикативные определения (или к.-л. др. вызывающие сомнения предположения). К числу таких конструкций относится, напр., построение объединения всех элементов нек-рого множества M., a на этом построении основаны доказательства мн. осн. теорем математич. анализа. Поэтому, с одной стороны, предпринимаются усилия по построению теории М., не использующей конструкций этого рода, - т.н. предикативная математика (Г. Вейль, Лоренцен), в к-рой мн. классич. теоремы верны лишь с нек-рыми ограничениями, - с др. стороны, приобретает особую остроту проблема доказательства непротиворечивости различных вариантов аксиоматич. теории М., пригодных для построения на их основе классич. математики.

В начало энциклопедии