Приглашаем посетить сайт

Футбол (football-2000.niv.ru)

Философская энциклопедия (в 5 томах, 1960-1970)
ПРОСТРАНСТВО

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ПРОСТРАНСТВО

ПРОСТРАНСТВО (в математике) - собирательное наименование матем. абстракций, предполагающих - или хотя бы допускающих - интерпретацию в терминах "наглядной" материальной протяженности, а также близких к ним по форме, структуре, отраженной, напр., в аксиоматич. описании, совокупностей абстрактных объектов.

Идея П. претерпела по мере развития математики сложную эволюцию. Вначале наука о П. - геометрия - стремилась к описанию "того самого" Π., к-рое нас окружает, а единственность "этого" П. представлялась само собой разумеющейся. Наметившаяся еще в античной Греции тенденция к аксиоматич. построению, не опирающемуся па пространственную интуицию (почти до конца 19 в. считалось, что тенденция эта осуществлена - хотя бы в "Началах" Эвклида), свидетельствовала не столько об отказе от признания эмпиричности идеи П., сколько о характерном для греч. науки и философии примате "высоких", умозрит. методов и представлений по сравнению с "низменными", опытными. Т.о., эвклидова аксиоматика не в большей мере отражала сомнения в единственности П., чем любая из совр. аксиоматик механики или генетики - сомнения в реальности и существ. единственности интерпретаций этих теорий. Тем не менее именно античная традиция несла в себе зачатки позднейших идей арифметизации (теория пропорций Евдокса Книдского, также дошедшая до нас по "Началам") и формальной аксиоматизации. Первая из этих идей реализовалась в 17 в. с введением координатного метода, установившего по существу изоморфизм между числовыми и пространственными множествами (П. Ферма, Р. Декарт), а затем в виде многочисл. приложений к геометрии методов матем. анализа. Вскоре "пространственная" терминология активно вторгается и во внематем. приложения - в теоретич. механику (Ж. Л. Лагранж) и др., так что, не подвергая еще сомнению единственность и определенность прообраза геометрич. абстракций - реального физич. П., в математике постепенно привыкли рассматривать многочисл., "пространственноподобные многообразия", также называя их "П.". Решительным пересмотром понятия П. ознаменовалась 2-я пол. 19 в.: открытие неэвклидовых геометрий (Н. Лобачевский, Я. Бойай, К. Ф. Гаусс), строгое доказательство независимости постулата о параллельных, означавшее в то же время доказательство непротиворечивости геометрии Лобачевского - Бойая относительно эвклидовой геометрии (Э. Бельтрами, А. Пуанкаре, Ф. Клейн), дальнейшее обобщение и частичный отказ от эвклидовых постулатов (Б. Риман), развитие геометрии, алгебры и анализа и их приложений, концепции многомерного и бесконечномерного пространства (Д. Гильберт) - этап этот завершается четкой формулировкой геометрич. аксиом (Паш, Гильберт) и отчетливым пониманием возможностей их варьирования. На этом этапе разговоры о "соответствии геометрич. аксиом реальному миру" многие математики, активно воспринявшие формально-аксиоматич. концепцию Гильберта (хотя и не в буквальном следовании его идеям), склонны были считать, в соответствии с конвенционалистскими веяниями конца столетия, не более как "пережитками платонизма". Термин "П." в 20 в. уже прочно воспринимается как р о д о в о й, и целые разделы математики посвящаются гл. обр. изучению "природы" многообразных "пространств" (проективная и аффинная геометрии, функциональный анализ и особенно топология). С утверждением представлений теории множеств одним из центральных понятий математики становится понятие "абстрактного" (точечного) П. и различные его модификации: топологич., метрич., линейные П. Отныне для математика П. - это просто совокупность нек-рых "элементов" (чисто условно именуемых "точками"), полностью характеризуемых а к с и о м а м и (см. Метод аксиоматический), и он "геометризует", если это ему по к.-л. соображениям удобно, самые отвлеченные (или, во всяком случае, далекие от обычных представлений о "П.") теории и системы, вводя, по ходу дела, в них "метрику), и "топологию". Но - это отчетливо проявилось как раз в кульминационный период формально-аксиоматич. математики - проблема описания мира отнюдь не "снимается" построением формальных матем. языков. Более того, оказалось, что не только вопрос о "действительном" П. может быть - по крайней мере, в принципе - разрешен экспериментально, но что "физическая начинка" П. (распределение масс в нем) существеннейшим образом влияет на его свойства и тем самым на ф о р м а л ь н о е описание, сколь бы априорным оно ни казалось (см. Относительности теория). На совр. этапе развития математики обе эти тенденции - формально-аксиоматическая и "физико-геометрическая" - не только сосуществуют, но и сложными и многообразными путями влияют одна на другую. Эволюция взглядов на сущность понятия П. в математике никоим образом не закончилась, и единственное, о чем можно твердо говорить уже сейчас, так это то, что непреложность аксиоматич. построений не может быть "опровергнута", а выяснение "сущности" "нашего" П. (хотя бы проблемы его кривизны, конечности или бесконечности) не может быть достигнуто чисто умозрительно, ссылкой на догмы. См. также Математика, Математическая бесконечность, Прерывность и непрерывность, Относительности теория, Метод аксиоматический, Континуум и лит. при этих статьях.

Ю. Гастев. Москва.

В начало энциклопедии