Приглашаем посетить сайт

Автомобили (auto-2000.niv.ru)

Философская энциклопедия (в 5 томах, 1960-1970)
МОДЕЛИРОВАНИЕ

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

МОДЕЛИРОВАНИЕ

МОДЕЛИРОВАНИЕ - исследование объектов познания на их моделяx; построение (и анализ, изучение) моделей объектов (систем, конструкций, процессов и т.п.). Предметом М. могут быть как конкретные, так и абстрактные объекты, как реально существующие системы, так и системы, лишь подлежащие конструированию (для определения характеристик и рациональных способов конструирования к-рых и применяется М.). В отличие от понятия модели, допускающего - при всем разнообразии смыслов, в к-рых употребляется термин "модель", - достаточно строгое (и даже вполне формальное) определение в логико-математич. терминах, понятие М. (в описанном выше смысле) имеет исключительно содержат. характер, т. к. является гносеологич. категорией, характеризующей один из важнейших путей (приемов, способов, методов) человеч. познания вообще. Термин "М." (и связанные с ним термины "принцип М.", "метод М.", "метод моделей"; обороты речи, подобные следующим: "применение принципа М.", "использование метода моделей" и т.п.) охватывает широкую и разнообразную совокупность познават. приемов; при этом многосмысленность термина "модель" (см. Модель), сложившаяся в науке, технике и гносеологии, сказывается и на употреблении термина "М.", затрудняя проведение к.-л. жесткой классификации видов M. Однако все познават. приемы, охватываемые понятием М. в его различных смыслах, имеют то общее, что основаны на переносе знания, извлеченного из построения и анализа модели, на моделируемый объект ("оригинал"). Этот перенос находит свое оправдание в том, что модель отображает (воспроизводит или, как говорят, моделирует) определ. свойства изучаемого объекта; при этом указанное отображение основано, явно или неявно, на точных понятиях изоморфизма и гомоморфизма.

В и д ы м о д е л и р о в а н и я. В зависимости от характера моделей говорят о предметном М., о физич. М., о (предметно-)математич. М., о М. на электронных цифровых машинах (ЭЦМ), о знаковом М. и т.д. Предметное М. означает исследование объекта на модели, воспроизводящей - часто с применением тех же материалов, из к-рых построен моделируемый объект, - осн. геометрич., физич., динамич. и функциональные (т.е. относящиеся к функционированию) характеристики объекта. В простейшем случае предметного М. имеют дело с т.н. макетом объекта, в наглядной форме и обычно в уменьшенном размере передающим пространственные свойства объекта, его внешний вид, соотношение и взаимосвязь частей (макеты, используемые как пособия в музеях, в учебных заведениях и т.п.). В отличие от макетирования, предметное М. (в собственном смысле слова), преследующее цель воспроизведения прежде всего физич. процессов, происходящих в оригинале, наз. физич. М. (этот вид М. не следует смешивать с теоретич. М. в физич. науке, см. ниже). Физич. М. широко применяется в науке и технике; оно используется как способ разработки и экспериментального изучения на моделях свойств строит. конструкций (зданий, сооружений), разнообразных механизмов, самолетов, судов, тепловых установок и пр. Важнейшими вопросами физич. М. являются вопросы о том, как строить физич. модели и как по результатам их исследования (в частности, экспериментального) судить о явлениях, происходящих (или могущих произойти) в т.н. "натурных условиях". Ответы на эти вопросы наука получает, используя теорию размерности физич. величин и теорию подобия.

От физич. М. следует отличать т.н. (предметно-)математич. М. - исследование физич. процесса путем опытного изучения к.-л. явления иной физич. природы, но описываемого теми же математич. соотношениями, что и моделируемый процесс. Напр., механич. и электрич. колебания относятся к различным формам движения материи, но они могут быть описаны одними и теми же дифференц. уравнениями; поэтому с помощью механич. колебаний можно моделировать электрические [такое М. будет примером т.н. механич. М., т.е. М. с помощью процессов, описываемых в (классич.) механике ] и наоборот. В последнем случае мы имеем пример электрич. М. (Предметно-)математич. М. широко применяется для замены изучения одних явлений изучением др. явлений, более удобных для лабораторного исследования, в частности потому, что они допускают измерение неизвестных величин. Особенно важным при этом является электрич. М., позволяющее на электрич. моделях изучать механические, тепловые, гидродинамические, акустические и иные явления. Электрич. М. лежит в основе работы вычислит. машин непрерывного действия - т.н. аналоговых, или моделирующих машин (напр., дифференциального анализатора, электрич. интегратора и др.). В то время как аналоговые машины по своим функциям подобны конкретным (моделируемым) процессам (универсальные), электронные цифровые машины (ЭЦМ), М. на к-рых приобретает все большее методологич. и практич. значение, можно уподобить чистым тетрадям, страницы к-рых можно заполнить, в принципе, описанием любого процесса в виде его программы, т.е. закодированной на "машинном языке" (см. Кодирование) системы предписаний, следуя к-рым машина может "воспроизвести" ход моделируемого процесса. Моделью к.-л. процесса или явления при таком "машинном М." можно, очевидно, с равным основанием называть как программу этого процесса (явления), так и самую ЭЦМ, после введения в нее этой программы. Иначе говоря, универсальность ЭЦМ - явление того же порядка, что "универсальность" нашего мышления и языка, - в том смысле, что средствами последних мы отображаем (и тем самым "моделируем") любое явление внешнего мира.

М. на (универсальных) цифровых машинах можно рассматривать как технич. реализацию определенной формы т.н. знакового М., характерная черта к-рого состоит в том, что моделями в этом случае являются либо плоские фигуры (схемы, графики, т.н. "деревья" формул, графы и т.п.), либо строчки знаков, называемых обычно буквами, составляющие слова в определенном алфавите (значительно реже в качестве знаковых моделей используются трехмерные объекты); при этом и те, и другие, во-первых, рассматриваются вместе с определ. операциями (преобразованиями) над ними или их элементами, к-рые выполняет человек или машина, и, во-вторых, определ. образом истолковываются в терминах той предметной области, к к-рой относится моделируемый процесс или объект. Поскольку оперирование со знаками при знаковом М. всегда связано, в той или иной степени, с п о н и м а н и е м знаков и операций над ними (что выражается в осознании их смысла и значения) и поскольку реальное воспроизведение и преобразование знаков может заменяться мысленно-наглядным представлением знаков и операций, постольку знаковое М. можно назвать мысленным М.

Знаковое М., осуществляемое математич. или логич. средствами, наз. иногда расчетным М. или соответственно математическим (абстрактно- математическим) и логическим (абстрактно- логическим). Если в случае предметного М. новое знание получается в результате экспериментального исследования модели, то в случае математич. M. опытное исследование заменяется логич. анализом и новое знание получается дедукцией из исходного описания модели.

Значение моделирования в п о з н а н и и. В наст. время роль М. значительно возросла в связи с развитием кибернетики и совр. вычислит. техники. Кибернетика сильно расширила область явлений, к-рые оказалось возможным моделировать (явления, происходящие в живой природе, в сфере экономики и языкового общения, в процессах обучения и т.д.). Одной из интереснейших задач кибернетич. М., т.е. М., осуществляемого в рамках идей и теорий кибернетики или (и) с помощью ее технич. средств, является, напр., задача М. различных форм умственной деятельности; последнему не следует ставить заранее к.-л. пределы, ибо прогресс в области M. интеллектуального труда имеет громадное социальное значение, представляя в распоряжение человечества могущественные средства умножения его материальных и духовных сил (см. Логические машины). Это не исключает, конечно, того факта, что при любом М. интеллектуальной деятельности сохраняется различие между моделью и оригиналом.

М. тесно связано с экспериментом. Изучение к.-л. явления на его модели при предметном и (предметно-) математич. М., при М. на ЭЦМ представляет собой особый вид эксперимента - т.н. модельный эксперимент, специфика к-рого по сравнению с обычным экспериментом состоит в том, что в процесс познания включается промежуточное звено - модель, выступающая, с одной стороны, как средство, а с др. стороны - как предмет экспериментального исследования, заменяющий "подлинный" объект изучения. Благодаря этому возможности экспериментального исследования значительно расширяются, т. к. на моделях можно воспроизводить и изучать многие объекты, прямой эксперимент над к-рыми затруднителен, экономически невыгоден или вообще невозможен из-за их большой сложности, значительных или исключительно малых размеров, чрезвычайно большой длительности или же, наоборот, чрезвычайной кратковременности их существования (сложные промышленные комплексы, биологич. явления, социальные процессы, явления микромира, процессы, происходящие на звездах и в галактиках, и т.п.); важнейшее значение приобретает модельный эксперимент тогда, когда объектом изучения являются те стороны явления, к-рые физически не могут быть отделены от него самого.

Своеобразной формой оперирования со знаковыми моделями становится т.н. мысленное экспериментирование, основанное на введении в рассмотрение идеализированных абстрактных объектов (см. Идеализация). Мысленное экспериментирование над знаковыми моделями имеет большое познават. значение, особенно в тех случаях, когда нельзя провести реальный эксперимент или применить предметное или предметноматематич. М. (напр., мысленные эксперименты с инерциальной системой в механике и т.п.). Для мысленного эксперимента, совершаемого над "воображаемой" (заданной в к.-л. знаковой форме) моделью, характерно тесное взаимодействие теоретич. мышления и воображения.

М. неразрывно связано с процессами абстрагирования и идеализации, посредством к-рых происходит выделение тех сторон моделируемых объектов, к-рые отображаются на модели. При этом специфика М. состоит в том, что анализ, абстрагирование и идеализация происходят или с помощью операций над чувственно-воспринимаемыми реальными объектами, в частности над знаками, или же с помощью наглядных образов, полученных из непосредственного созерцания этих объектов и практич. действий с ними. Т.о., М. удовлетворяет, - в форме, приемлемой для науки, - потребность в наглядности, связанную с чувственным, опытно-практич. происхождением знания. М. используется также как средство воспроизведения сложного объекта или структуры в виде единого целого, что особенно важно, если в опыте (на практике) мы имеем дело лишь с нек-рой его частью. Эта функция "глобализации" может реализоваться, напр., в форме создания зрит. картины, объекта, его схемы и т.п. или путем построения знаковой системы, позволяющей наглядно представить и сделать обозримыми связи и отношения, характеризующие объект как целое.

Будучи связанным с процессами анализа, абстрагирования и идеализации М. позволяет вместе с тем решать противоположные задачи синтеза и конкретизации знания, что обычно осуществляется посредством уточнения и дополнения исходной модели новыми элементами, свойствами и характеристиками, в результате чего конкретизированная модель становится более полным и точным отображением моделируемого фрагмента действительности. Следует, однако, иметь в виду, что на пути конкретизации моделей могут возникать принципиальные трудности, связанные с ограниченностью средств М.; примером может служить ограниченность возможностей М. процессов микромира "классическими" (т. е. относящимися к классич. механике, макроскопическими) средствами. В качестве выхода из такого положения иногда используются модели, дополняющие друг друга, - как это имеет место в квантовой механике, где модели изучаемых в ней явлений иногда даже в нек-ром смысле противоречат друг другу (напр., для моделирования свойств атомных объектов используются корпускулярная и т.н. "волновая" модели, исключающие и вместе с тем дополняющие друг друга).

М. является важным элементом в процессах выдвижения и проверки гипотез, т.к. на моделях, в частности при М. на электронных цифровых машинах, оказывается возможным представлять процессы и связи, лежащие, согласно предположению, в основе той или иной группы наблюдаемых явлений. Здесь проявляется важная эвристич. роль М., к-рое способно подсказывать новые идеи, вести к открытию неизвестных явлений и закономерностей. Даже если модель оказывается неудачной, т.е. не позволяет непосредственно выявить интересующие исследователя закономерности и предсказать новые факты, проведенный теоретич. анализ и эксперименты во мн. случаях помогают найти новые пути развития теории и построить более совершенные модели. М. часто служит средством построения теории нек-рой области явлений на основе аналогии с др. областью, для к-рой теория была разработана ранее. Оно также позволяет объединять теории, обобщать их, распространяя на новые области явлений, и т.д. Кроме того, связанная обычно с М. возможность дать объяснение явлениям в наглядной форме - часто по аналогии с хорошо известными процессами - обусловливает педагогич. значение моделей и М. (модели как средство демонстрации при обучении).

Всякая науч. теория имеет неск. аспектов: статический (совокупность выраженных в ней знаний), индуктивно-динамический (обогащение теории новыми положениями, полученными в результате непосредств. изучения действительности, в частности основывающегося и на данной теории) и дедуктивно-динамический (обогащение теории положениями, получающимися в результате ее дедуктивного развития). Несколько расширяя понятие М., можно сказать, что теория в этом последнем аспекте выступает как логич. модель отражаемого в ней фрагмента действительности. Возможность функционирования науч. теории в качестве логич. модели в принципе справедлива для любой теории, но нетривиальным логич. М. становится лишь на сравнительно высокой ступени развития науки, когда в ней используются абстрактно-математич. построения. При этом часто происходит то, что можно назвать "оборачиванием результата": процесс начинается не с создания теории, к-рая затем может быть использована в качестве модели, а с разработки нек-рой абстрактно-математич. модели, к-рая затем, путем соответствующей интерпретации, приобретает предметное содержание и становится теорией (таков, напр., был путь создания квантовой механики).

Ни одна модель не может выразить всех свойств и отношений моделируемого фрагмента действительности. Всякая модель характеризует действительность лишь приближенно. Степень этого приближения зависит от вида М., от используемых в нем теоретич. и технич. средств. Переход от одних моделей к другим, более глубоко воспроизводящим особенности моделируемых явлений, а также сочетание различных видов М., позволяет все более полно и глубоко характеризовать действительность. В этом - важное гносеологич. значение М. Однако М. следует рассматривать не только как одно из средств отображения объективного мира, но еще и как объективный практич. критерий истинности нашего знания о мире, по-новому освещающий связь науч. теории с науч. практикой и в то же время наглядно демонстрирующий справедливость диалектико-материалистич. тезиса о том, что "...живая человеческая практика врывается в самое теорию познания..." (Ленин В. И., Соч., т. 14, с. 177).

Лит.: Харкевич Α. Α., Эквивалентные электрич. схемы преобразователей, "Журн. технич. физики", 1945, т. 15, вып. 7; Гутенмахер Л. И., Электрич. модели, М.-Л., 1949; Теория подобия и моделирование, М., 1951; Кирпичев М. В., Теория подобия, М., 1953; Седов Л. И., Методы подобия и размерности в механике, 4 изд., М., 1957, гл. 1, § 6, гл. 2, § 6; Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959, ч. 1, гл. 6; Зиновьев А. А. и Ρевзин И. И., Логич. модель как средство науч. исследования, "Вопросы философии", 1960, No1; Китов А. И. и Криницкий Η. Α., Электронные цифровые машины и программирование, 2 изд., М., 1961; Беркли Э., Символич. логика и разумные машины, пер. с англ., М., 1961; Фролов И. Т., Гносеологич. проблемы моделирования биологич. систем, "Вопр. философии", 1961, No 2; Mаслов П. П., Моделирование в социологич. исследованиях, "Вопр. философии", 1962, No 3; Вальт О., О познавательной функции модельных представлений в совр. физике, "Вестник ЛГУ". Серия экономика, философия, право, 1961, No 5; его же, Познавательное значение модельных представлений в физике, Тарту, 1963; Жданов Ю. Α., Моделирование в органич. химии, "Вопр. философии", 1963, No 6; Новик И. Б., Гносеологич. характеристика кибернетич. моделей, "Вопр. философии", 1963, No 8; Штофф В. Α., Роль моделей в познании, Л., 1963; Моделирование в биологии, пер. с англ., М., 1963; Клаус Г., Кибернетика и философия, пер. с нем., послесловие Л. Б. Баженова, Б. В. Бирюкова и А. Г.Спиркина, М., 1963; Глушков В. М., Гносеологич. природа информационного моделирования, "Вопр. философии", 1963, No 10; Rosenblueth Α., Wiener N., The role of models in science, "Philos. Sei.", 1945, v. 12, No 4; Hutten Ε. Η., Language of modern physics, N. Y., 1956; Harre R., An introduction to the logic of sciences, L., 1960; Кuipers Α., Model en inzicht, Assen - [Nijmengen ], 1959; Proceedings of the Colloqium: The concept and the role of the model in mathematics and natural and social sciences, Utrecht, January 1960, [Dordrecht, 1961 ]; "Synthese", 1960, v. 12, No 2-3; Straass G., Modell und Erkenntnis, Jena, 1963.

Л. Баженов, Б. Бирюков. Москва. В. Штофф. Ленинград.

В начало энциклопедии