Приглашаем посетить сайт

История (history.niv.ru)

Философская энциклопедия (в 5 томах, 1960-1970)
СИММЕТРИЯ

В начало энциклопедии

По первой букве
A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

СИММЕТРИЯ

СИММЕТРИЯ (от греч. συμμετρία - соразмерность) - всеобщая особенность любых процессов, тел и явлений, обычно непосредственно связываемая с их структурностью. В совр. естествознании существует два понимания С. - в узком и широком смысле слова.

В более узком, исторически первом понимании С. считают свойство материального объекта совмещаться с самим собой при обмене местами совместно или (и) зеркально равных его частей. При таком подходе для выявления вида С. данного объекта ищут полную совокупность операций (математически - группу преобразований) - поворотов (вокруг оси), переносов (вдоль оси трансляций), отражений (в точке, линии, плоскости), переводящих его в новое положение, не отличимое от прежнего. Эти операции и соответствующие им элементы С. - простые, зеркальные, инверсионные, трансляционные, винтовые оси, плоскости и центр С., плоскость скользящего отражения - позволяют узнавать число, характер, законы и формы однообразного взаиморасположения равных (а в неявном виде и неравных) частей данного объекта, т.е. один из аспектов его структуры, точнее - симметрич. структуру.

Наибольшие заслуги в изучении природы С. принадлежат кристаллографии. В ней, как впервые показали франц. ученый Гессель и русский А. В. Гадолин в 19 в., внешняя форма кристаллов описывается 32 точечными группами, а их внутр. строение (геометрически это было впервые доказано рус. кристаллографом Е. С. Федоровым и почти одновременно - алгебраически нем. математиком А. Шёнфлисом) - 219 (230) пространств. группами С. Кроме того, в кристаллографии различают 17 групп С. структуры кристаллич. граней, 80 групп С. слоев (бесконечных двумерных фигур в трехмерном пространстве), группы С. континуума (непрерывных), дисконтинуума (прерывных) и семиконтинуума (прерывных в одних и непрерывных в др. направлениях сред). В наст. время кристаллография, кристаллохимия, стереохимия, молекулярная биология, применяя симметричный подход в сочетании с рентгено-, электроно-, нейтроно-графич. и др. методами, сумели расшифровать тонкое строение многих алюмосиликатов, белков, нуклеиновых кислот и т.д.

Проявления С. в природе позволяют с новых сторон охарактеризовать законы единства и борьбы противоположностей, всеобщего движения и развития, а также категории пространства, времени, тождества, различия. Теория С. разделяет все объекты природы на конечные (типа нейтрино, молекулы метана, плода яблони) и потенциально бесконечные (типа стереорегулярной молекулы, шахматного поля, кристаллич. решетки), к-рые она отличает друг от друга по строению и набору элементов - видам С. Выявление С. осуществляется посредством двух осн. форм движения - незеркальных (I рода), реализуемых в виде различных поворотов и переносов, и зеркальных (II рода) - движений при отражениях в плоскости, линии, точке. Им в соответствие ставятся два вида равенства - совместимое (обнаруживаемое движением I рода - совмещением) и несовместимое (выявляемое движением II рода - зеркальным отражением и последующим наложением) - и два рода элементов С. - I рода (простые, винтовые, трансляционные оси) и II рода (плоскость, центр). В антисимметрии - теории C. трехмерных фигур в четырехмерном пространстве - этим понятиям "противостоят" I и II рода антидвижения, антиравенства, антиэлементы. При антисимметрич. операциях обычные симметрич. преобразования сопровождаются превращениями положит. частей объекта в (антиравные) отрицательные, а отрицательных - в (антиравные) положительные. Одной из таких операций является известная в квантовой механике операция комбинированной инверсии Л. Д. Ландау (или, в терминах теории антисимметрии, - антиинверсии в антицентре).

В теории С. все объекты природы разделяются на диссимметрич. и недиссимметрич. Диссимметрич. называются объекты типа часов, винтовой раковины моллюска, кристаллов кварца, солнечной системы, к-рые, в отличие от недиссимметрических, при отражении в зеркале дают изображения, в нек-рых отношениях противоположные по своей форме оригиналам. Так, зеркальные и действит. часы имеют противоположные относительно друг друга направления хода стрелок, порядок и характер написания цифр и т.д. Такие объекты в природе могут быть реализованы как в виде оригинала, так н в виде его зеркального отражения, т.е. как в правой, так и в левой модификациях (таковы, напр., перчатки, кристаллы кварца). Эти модификации по сопоставляемым свойствам могу быть одинаковыми или неодинаковыми, что определяется взаимной противоположностью или непротивоположностью сопоставляемых признаков. В этом пункте теория С. подводит к важной проблеме правизны (правого) и левизны (левого), в к-рой выделяются след. осн. вопросы: 1) закономерности формы и строения, 2) встречаемость, 3) свойства и 4) детерминированность D и L объектов (т.е. объектов правых и левых).

При математич. и экспериментальном исследовании формы D и L объектов был обнаружен ряд новых противоположностей - D, L, S виды изоморфизма и D, L, S виды и ряды полиморфизма. Примерами D, L видов изоморфизма - антипода полиморфизма - могут быть самые разнообразные объекты, начиная от продуктов деятельности человека, стеблей растений, раковин моллюсков, молекул нуклеиновых кислот и кончая элементарными частицами, характеризующимися D или L винтовой закрученностью. Примерами (пока единственными) D, L, S видов и рядов полиморфизма являются D, L, S виды и ряды расчленения листовых пластинок, открытые выдающимся ботаником Н. П. Кренке.

Диссимметрич. полиморфизм реализуется в природе в двух противоположных формах - изомерийной и неизомерийной. В первом случае имеет место совокупность объектов, одинаковых по вызывающим правизну и левизну факторам, но различных по характеру их сочетания. Диссимметрич. изомерия под названием оптич. изомерии (молекул) была известна только в химии, но в последнее время открыта диссимметрич. и недиссимметрич. изомерия и связанные с ними явления на растениях и животных.

Изучение встречаемости D и L объектов привело к своеобразной "гегелевской" триаде, картине отрицания отрицания. В пределах мира, построенного из частиц, а не античастиц, элементарные частицы характеризуются неодинаковой, а биогенные молекулы и кристаллы - одинаковой (первое отрицание), биологические объекты - снова преимущественно неодинаковой (второе отрицание или отрицание отрицания) встречаемостью их D и L модификаций. При этом ряд свойств при переходе от D разновидности биообъектов к L изменяется т.о., что никакими симметрич. или антисимметрич. операциями из свойств D разновидности биообъекта нельзя вывести, предсказать свойства его L разновидности. Напр., L чаще встречающиеся листья первого яруса фасоли обладают бóльшими, чем D, размерами, весами сырого и сухого вещества, количеством пигментов, интенсивнее дышат, фотосинтезируют и т.д.

Раздвоение всех объектов природы на диссимметрич. и недиссимметрич. определяет два типа особых процессов: во-первых, диссимметризация, процесс последоват. выпадения у объектов элементов С., появления асимметрич. объектов и в дальнейшем увеличения (в пределе - до бесконечности) степени их асимметричности. Этот процесс хорошо прослеживается в химии и биологии: напр., эволюция химич. формы движения материи сопровождается понижением (в целом) С. химич. объектов, появлением объектов, содержащих все большее число асимметрич. углеродных атомов. Во-вторых, это симметризация, т.е. процесс преобразования через множество количеств. и качеств. изменений бесконечно асимметричных объектов в бесконечно симметричные. Напр., нек-рые иглокожие когда-то были двусторонне симметричными подвижными формами. Затем они перешли к сидячему образу жизни и их С. повысилась: у них выработалась радиальная С. (но их личинки до сих пор сохранили двустороннюю С.). У части иглокожих, вторично перешедших к активному образу жизни, в результате диссимметризации радиальное строение вновь заменилось билатеральным (неправильные ежи, голотурии). Из этого примера хорошо видна неразрывная связь симметризации с диссимметризацией.

Существование симметризации и диссимметризации ведет по мере эволюции материи к смене одних видов С. другими. Это особенно ярко проявляется при сопоставлении видов С. мертвого окристаллизованного вещества и живых организмов, что позволяет существенно отличить их друг от друга и по принципу С. Так, до наст. времени неизвестны свойства кристаллов, С. к-рых характеризовалась бы осями 5, 7 и иного, исключая бесконечность, порядка, кроме предусмотренного рядом 1, 2, 3, 4, 6, ∞ однако в живой природе весьма часто встречаются как раз невозможные для кристаллов виды С. С др. стороны, только среди кристаллов встречаются формы, характеризующиеся одним лишь центром С. "Раздвоение" в процессе познания явления С. на образующие их противоположности и соответствующие им противоположные по содержанию понятия в то же время сопровождается их связыванием множеством переходных форм, понятий-гибридов. Здесь теория строится не только по принципу "либо-либо", но и по принципу "и то, и др." Так, помимо осн. движений I и II рода в теории фактически признается и комбинированное движение, включающее в себя одновременно оба эти движения, - движение III рода, производное. Последнему соответствуют совместимо-зеркальное равенство, особые элементы - зеркально-поворотные и инверсионные оси, плоскость скользящего отражения.

Для характеристики С. важным является понятие равенства. В наст. время при изучении С. говорят о равенствах совместимом, зеркальном (несовместимом), равенстве противоположностей (антиравенстве), наконец, об антинеравенствах и неравенствах.

Тождество и различие, покой и движение, устойчивость и изменчивость, сохранение и уничтожение ярко выступают как стороны С. при рассмотрении последней с т. зр. теории групп и инвариантов. Дело в том, что совокупность операций, переводящих объект в новое положение, не отличимое от исходного, с т. зр. математики образует группу преобразований, относительно к-рых свойство этого объекта сохранять свою фигуру является инвариантом. Отсюда нетрудно получить более широкое и вместе с тем более глубокое определение С.

С. при таком, более широком понимании называют просто свойство неизменности нек-рых сторон, процессов, явлений, отношений материальных объектов, в частности законов природы, относительно нек-рой группы преобразований (изменения ряда "физич." условий). Важнейшими группами, относительно к-рых наиболее часто рассматривается инвариантность геометрич. и физич. величин, различных уравнений, квантовомеханич. операторов и т.д., являются группы смещений во времени и пространстве, группа трехмерных вращений, группа Лоренца и ряд др. - как дискретных (типа кристаллографических), так и непрерывных (типа лоренцевых групп).

Согласно теореме Эмми Нётер, наличие в системе С. связано с нек-рой сохраняющейся для этой системы физич. величиной. Отсюда, если известна группа (вид) С. данной системы, то можно найти для нее законы сохранения и, наоборот, исходя из законов сохранения, можно попытаться охарактеризовать свойства С. этой системы. Сама Нётер впервые установила, что сохранение энергии, импульса и углового момента связано, соответственно, с однородностью времени, однородностью и изотропностью пространства. Поэтому проверка сохранения принципов есть одновременно проверка истинности соответств. положений о характере С. пространства и времени. В физике элементарных частиц представления о С. позволили по-новому подойти к теории их взаимодействий, высказать идею существования ряда законов сохранения и предсказать существование нек-рых новых частиц.

Лит.: Тимердинг Г. Е., Золотое сечение, пер. с нем., П., 1924; Гика М., Эстетика пропорций в природе и искусстве, пер. с франц., [M., 1936]; Хэмбидж Д., Динамическая С. в архитектуре, пер. с англ., [М., 1936]; Гаузе Г. Ф., Асимметрия протоплазмы, М.-Л., 1940; Вернадский В. И., Проблемы биогеохимии, вып. 1-2, М.-Л., 1934-39, вып. 4, М.-Л., 1940; его же, Биогеохимич. очерки, М.-Л., 1940; Шубников А. В., Симметрия, М.-Л., 1940; его же, С. и антисимметрия конечных фигур, М., 1951; его же, Проблема диссимметрии материальных объектов, М., 1961; Федоров Е. С., С. и структура кристаллов. Основные работы, [М.], 1949; Гадолин А. В., Вывод всех кристаллографич. систем и их подразделений из одного общего начала, [M.], 1954; Новые свойства С. элементарных частиц. Сб. ст., М., 1957; Урманцев Ю. Α., Трусов Ю. П., О специфике пространств. форм и отношений в живой природе, "ВФ", 1958, No 6; Овчинников Η. Φ., О классификации принципов сохранения, "ВФ", 1962, No 5; Гелл-Maнн М., Розенфельд Α., Чу Дж., Сильно взаимодействующие частицы, "Природа", 1964, No 10, 11; Урманцев Ю. Α., О филос. и естественнонаучном значении нек-рых проявлений правизны и левизны в живой природе, в сб.: О сущности жизни, М., 1964; его же, О значении для философии проявлений С. в природе, "ВФ", 1964, No 4; Готт В. С., С. и асимметрия, М., 1965: Curie P., Oeuvres, P., 1908; Schoenflies Α., Theorie der Kristallstruktur, В., 1923; Ludwig W. von, Das rechts-links-Problem im Tierreich und beim Menschen..., В., 1932; Weуl Η., Symmetry, Princeton (N. J.), 1952; Wоlf К. L., Wolff R., Symmetrie, Münster-Köln, 1956; International tables for X-ray cristallography, v. 1-3, Birmingham, 1952-62.

Ю. Урманцев. Москва.

В начало энциклопедии